Weighted Frechet means as convex combinations in metric spaces: Properties and generalized median inequalities

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weighted Frechet Means as Convex Combinations in Metric Spaces: Properties and Generalized Median Inequalities

In this short note, we study the properties of the weighted Frechet mean as a convex combination operator on an arbitrary metric space (Y, d). We show that this binary operator is commutative, non-associative, idempotent, invariant to multiplication by a constant weight and possesses an identity element. We also cover the properties of the weighted cumulative Frechet mean. These tools allow us ...

متن کامل

Some Properties of Median Metric Spaces

We decribe a number of properties of a median metric space. In particular, we show that a complete connected median metric of finite rank admits a cononical bilipschitz equivalent CAT(0) metric. Metric spaces of this sort arise, up to bilipschitz equivalence, as asymptotic cones of certain classes of finitely generated groups, and the existence of such a structure has various consequences for t...

متن کامل

Optimal convex combinations bounds of centrodial and harmonic means for logarithmic and identric means

We find the greatest values $alpha_{1} $ and $alpha_{2} $, and the least values $beta_{1} $ and $beta_{2} $ such that the inequalities $alpha_{1} C(a,b)+(1-alpha_{1} )H(a,b)

متن کامل

compactifications and function spaces on weighted semigruops

chapter one is devoted to a moderate discussion on preliminaries, according to our requirements. chapter two which is based on our work in (24) is devoted introducting weighted semigroups (s, w), and studying some famous function spaces on them, especially the relations between go (s, w) and other function speces are invesigated. in fact this chapter is a complement to (32). one of the main fea...

15 صفحه اول

Inequalities between Power Means and Convex Combinations of the Harmonic and Logarithmic Means

We prove that αH a, b 1 − α L a, b > M 1−4α /3 a, b for α ∈ 0, 1 and all a, b > 0 with a/ b if and only if α ∈ 1/4, 1 and αH a, b 1 − α L a, b < M 1−4α /3 a, b if and only if α ∈ 0, 3√345/80 − 11/16 , and the parameter 1 − 4α /3 is the best possible in either case. Here, H a, b 2ab/ a b , L a, b a − b / loga − log b , and Mp a, b a b /2 1/p p / 0 and M0 a, b √ ab are the harmonic, logarithmic, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Statistics & Probability Letters

سال: 2012

ISSN: 0167-7152

DOI: 10.1016/j.spl.2012.06.001